Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Total Environ ; 748: 141242, 2020 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-32827890

RESUMO

Most former industrial sites are contaminated by mixtures of trace elements and organic pollutants. Levels of pollutants do not provide information regarding their biological impact, bioavailability and possible interactions between substances. There is genuine interest in combining chemical analyses with biological investigations. We studied a brownfield where several industrial activities were carried out starting in the 1970s, (incineration of pyralene transformers, recovery of copper by burning cables in the open air). Four representative plots showing different levels of polychlorobiphenyls were selected. Organic and trace metal levels were measured together with soil pedological characteristics. The bacterial community structure and functional diversity were assessed by 16S metagenomics with deep sequencing and community-level physiological profiling. Additionally, a vegetation survey was performed. Polychlorobiphenyls (8 mg.kg-1 to 1500 mg.kg-1) were from 2.4 × 103-fold to 6 × 105-fold higher than the European background level of 2.5 µg.kg-1. Polychlorinated dibenzo-p-dioxins and dibenzofurans ranged from 0.5 to 8.0 µg.kg-1. The soil was also contaminated with trace metals, i.e., Cu > 187, Zn > 217 and Pb > 372 mg.kg-1. Location within the study area, trace metal content and soil humidity were stronger determinants than organic pollutants of bacterial community structures and activities. Thus, the highest biological activity and the greatest bacteriological richness were observed in the plot that was less contaminated with trace metals, despite the high level of organic pollutants in the plot. Moreover, trace element pollution was associated with a relatively low presence of Actinobacteria and Rhizobia. The plot with the highest metal contamination was rich in metal-resistant bacteria such as Sphingomonadales, Geodermatophilaceae and KD4-96 (Chloroflexi phylum). Acidobacteria and Sphingomonadales, capable of resisting trace metals and degrading persistent organic pollutants, were dominant in the plots that had accumulated metal and organic contamination, but bacterial activity was lower in these plots than in the other plots.


Assuntos
Dioxinas , Furanos , Bifenilos Policlorados , Poluentes do Solo , Bactérias , Dibenzofuranos Policlorados , Dioxinas/análise , Metais , Bifenilos Policlorados/análise , Solo , Poluentes do Solo/análise
2.
J Hazard Mater ; 320: 458-468, 2016 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-27585278

RESUMO

Aided phytostabilization of a barren, alkaline metal(loid)-contaminated technosol developed on steel mill wastes, with high soluble Cr and Mo concentrations, was assessed in a pot experiment using (1) Ni/Cd-tolerant populations of Festuca pratensis Huds., Holcus lanatus L., and Plantago lanceolata L. sowed in mixed stand and (2) six soil treatments: untreated soil (UNT), ramial chipped wood (RCW, 500m3ha-1), composted sewage sludge (CSS, 120t DW ha-1), UNT soil amended with compost (5% w/w) and either vermiculite (5%, VOM) or iron grit (1%, OMZ), and an uncontaminated soil (CTRL). In the CSS soil, pH and soluble Cr decreased whereas soluble Cu, K, Fe, Mn, Mg, Ni and P increased. The RCW treatment enhanced soluble Fe, Mn, and Mg concentrations. After 15 weeks, shoot DW yield and shoot Cd, Cu, Fe, Mn, Mo, Zn, and Mg removals peaked for F. pratensis grown on the CSS soil, with lowest shoot Cr, Ni and Mo concentrations. Holcus lanatus only grew on the CTRL, UNT, and CSS soils and P. lanceolata on the CTRL soil. Best treatment, F. pratensis grown on the CSS soil, led to a dense grass cover but its shoot Mo concentration exceeded the maximum permitted concentration in forage.

3.
Ecotoxicol Environ Saf ; 126: 23-29, 2016 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-26707185

RESUMO

We aimed at determining the major physical-chemical processes that drive arsenic (As) dynamic in the rhizosphere of four species (Holcus lanatus, Dittrichia viscosa, Lotus corniculatus, Plantago lanceolata) tested for phytostabilization. Experiments were performed with an alkaline soil naturally rich in As. Composition of the soil solution of planted and unplanted pots was monitored every 15 days for 90 days, with a focus on the evolution of As concentrations in solution and in the non-specifically bound (i.e. easily exchangeable) fraction. The four species similarly increased As concentration in solution, but decreased As concentration in the non-specifically bound fraction. The major part (60%) of As desorbed from the non-specifically bound fraction in planted pots was likely redistributed on the less available fractions of As on the solid phase. A second part (35%) of desorbed As was taken up by plants. The minor part (5%) of desorbed As supplied As increase in solution. To conclude, plants induced a substantial redistribution of As on the less available fractions in the rhizosphere, as expected in phytostabilization strategies. Plants however concomitantly increased As concentration in the rhizosphere solution which may contribute to As transfer through plant uptake and leaching.


Assuntos
Arsênio/análise , Plantas/metabolismo , Rizosfera , Poluentes do Solo/análise , Solo/química , Arsênio/farmacocinética , Asteraceae/metabolismo , Holcus/metabolismo , Concentração de Íons de Hidrogênio , Lotus/metabolismo , Plantago/metabolismo , Poluentes do Solo/farmacocinética , Soluções/metabolismo
4.
J Environ Manage ; 159: 37-47, 2015 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-26042630

RESUMO

Organic compounds resulting from the decomposition of organic amendments are used in the remediation of trace element (TE) contaminated soils. The mobility, phytoavailability and soil exposure intensity of molybdenum (Mo), chromium (Cr), zinc (Zn), copper (Cu), Cobalt (Co) and Arsenic (As) were evaluated in the phytoremediation of contaminated technosols after the addition of two organic matter types, fresh ramial chipped wood (RCW) and composted sewage sludge (CSS). The experiment consisted of nine main treatment blocks: (A) 3X unamended soil (NE), (B) 3X soil amended with RCW and (C) 3X soil amended with mature CSS. Total dissolved TE concentrations were determined in soil pore water (SPW) sampled by Rhizon samplers. The soil exposure intensity was assessed by standard Chelex 100 DGT (diffusive gradient in thin films) probes. TE phytoavailability was characterized by growing dwarf beans on potted soils and analyzing their foliar TE concentrations. The results of the present study indicate that the addition of fresh RCW and CSS has a positive effect on contaminated technosols. RCW decreased the mobility of all the studied TE in the SPW, whereas CSS reduced the mobility of Mo, Cr and Co, while it increased the mobility of Zn, Cu and As compared with the NE soil. The Zn soil exposure intensity assessed by DGT was not significantly changed by the addition of RCW and CSS, while the Cr soil exposure intensity was significantly decreased after RCW addition compared with the soil treated with CSS and the NE soil. In contrast Cu and Co were non labile in the three soils. Both RCW and CSS decreased the foliar concentration and the mineral mass of Mo, Zn, Cr, As and Co in the bean leaves but increased the foliar Cu concentration.


Assuntos
Metais/análise , Poluentes do Solo/análise , Solo/química , Oligoelementos/análise , Biodegradação Ambiental , Disponibilidade Biológica , Cobalto , França , Metalurgia , Metais/farmacocinética , Plantas , Esgotos , Água , Madeira/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...